Vidyamandir Classes

Daily Tutorial Sheet 2

Level - 1 | JEE Main

- 16.(C) Catalyst changes activation energy or it stabilise intermediates but not the reactant or product, so enthalpy of reaction remains unaffected.
- $\textbf{17.(B)} \quad \text{We know } \ k = Ae^{-E_a/RT} \quad \text{For two different temperatures} \ \log \left(\frac{k_2}{k_1}\right) = \frac{Ea}{2.303\,R} \left(\frac{T_2 T_1}{T_1 T_2}\right)$
- 18.(C) Catalyst affects both the reactions, i.e., forward and backward reactions, so equilibrium is established in lesser time.
- **19.(A)** $r = k[C_6H_5N_2^+Cl^-]$
- 20.(D) Order can be zero, integer or fractional
- **21.(C)** $1M \longrightarrow 0.6M \longrightarrow 0.36$

$$\frac{1-0.6}{1} \times 100 = 40\%, \ \frac{0.6-0.36}{0.6} \times 100 = 40\%$$

Since half life or life of a particular fraction for first order reaction is independent of initial concentration so all successive fractional lives are also same.

The time required to complete 40% reaction is 20 min, and $0.6 \rightarrow 0.36$ is also 40% of reaction so in both cases time taken will be equal i.e., 20 min.

- **22.(D)** 3 half lives have passed in 8 seconds, $t_{1/2} = \frac{8}{2}$ s
- 23.(A) Hydrolysis of ester is pseudo first order reaction.

$$r = k[H^+][ester]$$
; $[H^+] = constant$

$$r = k'[ester]$$

So, rate constant, $k' = k [H^+]$

In the presence of H₂SO₄, k' value is bigger which implies H₂SO₄ furnishes more concentration of H⁺ ions and H₂SO₄ is stronger acid.

24.(A) All radioactive decay follows first order kinetics.

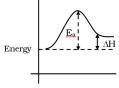
$$t_{1/2} = 25 \text{ min.}$$

So
$$\frac{N_t}{N_0} = \left(\frac{1}{2}\right)^{\frac{50}{25}} = \frac{1}{4}$$

$$t_{1/2} = 25 \text{ min.} \qquad \text{So} \qquad \frac{N_t}{N_0} = \left(\frac{1}{2}\right)^{\frac{30}{25}} = \frac{1}{4} \ .$$

$$25.(B) \quad 0.08 \, M \xrightarrow[t_{1/2}]{} 0.04 \, M \xrightarrow[t_{1/2}]{} 0.02 \, M \xrightarrow[t_{1/2}]{} 0.01 \, M$$

It will take three $t_{1/2}$ to reach 0.01 M


Time required = $3 \times 10 = 30$ min.

26.(D)
$$r = k[A][B] = \frac{k n_A n_B}{V^2}$$

Where n_A and n_B are moles of A and B respectively and V is volume.

$$r' = \frac{k \, n_A^{} n_B^{}}{\left(V \, / \, 4 \right)^2} = 16 \, \frac{k \, n_A^{} n_B^{}}{V^2} = 16 r \qquad ; \qquad \frac{r'}{r} = 16$$

27.(C)

Hence, $E_a > \Delta H$

28.(B) 75% disappears in 1.388 hr. so 50% disappears in
$$\frac{1.388}{2}$$
 hr or 0.694 hr. $k = \frac{0.693}{t_1/2} = \frac{0.693}{0.694 \times 60 \times 60} \sec^{-1} \approx \frac{100}{36} \times 10^{-4} \, \mathrm{s}^{-1} = 2.8 \times 10^{-4} \, \mathrm{s}^{-1}$

29.(B)
$$2NO_2 \xrightarrow{k_1} N_2O_4$$
In this reaction NO_2 disappears in forward and appears in backward reaction. So rate of disappear once is (consider elementary reaction) $\frac{-d[NO_2]}{dt} = 2k_1[NO_2]^2 - 2k_2[N_2O_4]$

30.(B) For
$$T \rightarrow \infty$$
 $e^{-E_a/RT} \rightarrow 1$ Hence $k \rightarrow A$; $k = 6.0 \times 10^{14} \ s^{-1}$